Practical Computer Security
through Cryptography

A. David McNab'
NAS Technical Report NAS-98-015

NASA Ames Research Center
Mail Stop 258-6
Moffett Field, CA 94035-1000
ncnab@as. nasa. gov

Abstract

The core protocols upon which the Internet was built are insecure. Weak au-
thentication and the lack of low level encryption services introduce vulnerabil-
ities that propagate upwards in the network stack. Using statistics based on
CERT/CC Internet security incident reports, the relative likelihood of attacks
via these vulnerabilities is analyzed. The primary conclusion is that the stan-
dard UNIX BSD-based authentication system is by far the most commonly ex-
ploited weakness. Encryption of sensitive password data and the adoption of
cryptographically-based authentication protocols can greatly reduce these vul-
nerabilities. Basic cryptographic terminology and techniques are presented, with
attention focused on the ways in which technology such as encryption and digital
signatures can be used to protect against the most commonly exploited vulner-
abilities. A survey of contemporary security software demonstrates that tools
based on cryptographic techniques, such as Kerberos, ssh, and PGP, are read-
ily available and effectively close many of the most serious security holes. Nine
practical recommendations for improving security are described.

"David McNab is an employee of MRJ Technology Solutions, Inc.






2. OVERVIEW

1/ INTRODUCTION

Internet protocols were designed to interconnect
geographically distant computers, ultimately to
help people share information. Their designers,
working in an environment where this was awk-
ward at best, were primarily concerned with re-
moving obstacles to information sharing. The net-
work community was tiny by today’s standard
and was mostly populated by professionals and
academics with a vested interest in cooperation.
Given this design context, it is not surprising that
security was a minor concern.

Compared with the original environment, to-
day’s Internet is egalitarian. The ivory tower
has been thrown down, and along with the posi-
tive and sometimes amazing results, serious prob-
lems have appeared. One of these is the exposure
of fundamentally insecure network protocols to a
subset of the on-line community only too happy to
exploit security vulnerabilities. The natural op-
position between sharing information with one’s
allies and protecting it from one’s enemies—or at
least the uninitiated—is played out in a continual
battle of technological leapfrog. New vulnerabili-
ties are uncovered only to be closed by new tools,
some of which inevitably introduce new vulnera-
bilities.

The security holes most easy to exploit are those
closed first—at least at computing sites vigilant
to security threats. “Crackers” are then forced to
seek new modes of attack. There are two general
fronts. The first is at the application level: almost
every networked application introduces security
concerns, if not outright vulnerabilities. As more
of these applications are developed and incorpo-
rated into the typical computing environment, the
number of vulnerabilities increases. In addition,
the more complex the software the more likely it is
to be misconfigured, leaving open an avenue of at-
tack. This can be considered the “widening” front
of attack. Here the game of leapfrog is played out
at its most obvious, as new applications are re-
leased, attacked, patched, the holes opened by the
patches attacked, and so forth.

The other direction of attack is the “deepening”

front, where the attacker takes advantage of his
or her specialized knowledge and access to more
powerful technology to attack “lower” parts of the
network infrastructure. This type of attack has
been made easier by the introduction of network
interfaces to Windows and Macintosh computers,
and by the increased availability of high quality
free UNIX implementations—complete with eas-
ily buildable source code. This report focuses on
the “deepening” front of attack and the tools that
are available to defend it.

The lowest level of Internet infrastructure, the
IP protocol, is fundamentally insecure. There
is no provision for cryptographically-based au-
thentication nor for encryption of protocol fields.
(Data payload can be of arbitrary type and for-
mat, hence can be encrypted.) This has motivated
the development of a secure version of IP, called
IPsec, now being tested and standardized[12].
IPsec provides encryption and authentication ser-
vices for the most fundamental Internet software
protocol[13, 14]. Unfortunately it will be some
time until IPsec is well deployed, and until then
IP will continue to be vulnerable.

Despite IP’s intrinsic vulnerability, one can use
it as a base upon which to construct secure higher
level protocols. For example, applications can im-
plement their own authentication and encryption
protocols encapsulated in IP packets. Computers
running the more secure protocols are still open
to attacks at the IP level, but users can choose to
take advantage of the higher level protocols. This
allows individuals to be more confident of the in-
tegrity and privacy of their data, despite the con-
tinuing risk of some types of system-wide attacks.
In addition, by taking away the “easy” vulnerabil-
ities, an administrator can make his or her system
less attractive to prospective attackers, who may
simply choose a less secure system as a target.

2/ OVERVIEW

This paper focuses on the vulnerabilities resulting
from IP’s fundamental security weaknesses and
introduces technology that can be used to build
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more secure higher level protocols.

The first section discusses the potential prob-
lems resulting from lack of encryption and poor
authentication. These are extant weaknesses in
the Internet protocols and application suites that
can be exploited to compromise security.

Next there are statistics drawn from Dr.
John Howard’s PhD dissertation, “An Analy-
sis of Security Incidents on the Internet 1989-
1995”[1]. Howard’s work is a comprehensive anal-
ysis of security incident reports to the Computer
Emergency Response Team Coordination Center
(CERT/CC) at Carnegie Mellon University, which
has collected security incident reports from its in-
ception in 1988. Howard’s statistics and analysis
provides a useful gauge of the actual threat posed
by the theoretical vulnerabilities.

Following the overview of Howard’s work are de-
scriptions of technology that can be used to close
the most severe vulnerabilities. The discussion
is largely theoretical, leading to the next section
where attention shifts to contemporary implemen-
tations of the theory. Finally there is a series of
practical recommendations for improving security.

3/ POTENTIAL VULNERABILITIES

The TP-based network protocols and the applica-
tions built on them are ubiquitous on the Inter-
net today. Examples of IP-based protocols are
TCP, UDP, FTP, and NFS. IP-based applications
include interactive session tools like telnet, rlogin,
and rsh; data transfer tools like rcp and ftp; win-
dowing systems such as X11; and electronic mail
infrastructure.

All of these tools depend on IP for their low-
est level of software networking and exhibit se-
curity weaknesses inherited from IP, for example
susceptibility to IP spoofing. Some introduce fur-
ther vulnerabilities due to their own flaws, for ex-
ample by transmitting cleartext passwords. This
section discusses the basic vulnerabilities that
threaten sites relying on standard IP-based net-
working tools.

Most people, if they even stop to consider it,

imagine that computer intrusions originate out-
side the target site. The mass media driven
stereotype suggests that the “hacker” is a young
man with poor personal hygiene habits and a
socio-pathic desire to annoy corporate and govern-
ment computer administrators. In truth, as de-
scribed in § 4.1, there is little documentation il-
luminating the nature of attackers. The data that
does exist suggests roughly an equal risk of attack
by an insider—for example a disgruntled former
employee—and attack from outside. (The exact
statistics are presented in § 4.) Of course, once an
external attacker gains access to the internal net-
work, he or she becomes an internal attacker. (For
these reasons, firewall-based defenses, which en-
courage the illusion that the outside world is evil
and hostile but the internal network is innocuous,
can be profoundly dangerous.) In the discussion of
potential vulnerabilities, cases where internal at-
tacks present a particularly severe or unexpected
threat are annotated.

3.1/ PASSWORD SNIFFING

Any time a password is transmitted over the In-
ternet, for instance in response to a login chal-
lenge from telnetd, it is vulnerable to interception.
Furthermore, there is virtually no way to know
that the data has been intercepted. Any computer
attached to any unswitched network between the
user and the target host is capable of reading the
transmission stream and extracting the password.
The majority of local area networks deployed to-
day are unswitched. For example, standard Eth-
ernet is essentially a “party line”. Any data trans-
mitted to any host on the local network are avail-
able to all other local hosts; the operating system
simply chooses to accept only those packets with
the “correct” IP address in the protocol header.
Nonetheless, commonly available network diag-
nostic tools (such as tecpdump) include options that
allow full access to the network stream, including
packets destined for other machines. There are
options to target specific hosts, or specific proto-
cols, or combinations of the two. On the majority
of UNIX machines this interception requires the
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root password, but this is an operating system pol-
icy rather than a security feature of the network
protocols.

There are switched networks available; in fact
there is a switched version of Ethernet. A
switched network essentially builds a private con-
nection between two (or more) hosts, rather than
broadcasting all messages on the party line and
letting the hosts pick out the ones intended for
them. This offers a number of advantages, includ-
ing improved security.

This paper focuses on the problems associ-
ated with unswitched networks, primarily be-
cause they are currently the most common. For
a few sites, converting to a switched LAN is
a valid option. In many other cases, however,
the cost or inconvenience is prohibitive. Fur-
thermore few system and security administrators
have the luxury of modifying the physical net-
work infrastructure—and if they do, the process
is likely to be time consuming. Finally, even if
a site’s internal networks are fully switched, ex-
ternal traffic is likely to flow over an unswitched
network. For that reason alone, all administra-
tors should understand the related security impli-
cations.

A password interception scenario might be-
gin with the compromise of an Internet Service
Provider (ISP), either by an external cracker or
by unethical monitoring performed by a rogue ISP
employee. Any customer of that ISP who connects
to remote computers using an unencrypted pass-
word exchange—e.g. using telnet or rlogin with-
out a .rhost file—compromises his or her password
by typing it. The cracker monitors network traf-
fic, looking for newly created sessions on the ports
used for login and watching for the characteris-
tic “Passwor d: ” prompt and its response. Unless
the attackers then uses the password in a foolish,
easy to detect way, the user has given away access
to his or her account without even knowing it.

A more serious scenario is that after connect-
ing to the remote machines the victim types the
root password, perhaps in response to an su
prompt to do some administrative work. This is a
dire situation—undetected compromise of the root

password and the password of a user with legiti-
mate root privilege.

Typing a root password over an unencrypted re-
mote connection is worse than writing down the
password and then losing it—worse because at
least in the latter case the user knows that he or
she may have compromised the password, and be-
cause somebody who finds the dropped password
note has no way of knowing for which machine it
is useful. Interception of a cleartext root password
is undetectable and implicitly identifies the com-
promised machine. In a security environment that
depends entirely on passwords for authentication,
this level of risk is clearly unacceptable. Luckily,
it is also one of the easiest vulnerabilities to cor-
rect, as discussed later.

If the attacker has physical access to the tar-
get’s internal network from a computer to which
he or she has root access—e.g. a laptop—all un-
encrypted traffic on that subnet is compromised.
Furthermore, even wary, security-conscious staff
will tend to trust the internal network, and many
will not think twice about typing a root or personal
password over an internal network connection—
say from a desktop machine to a server.

In the worst case, an administrator with legit-
imate access to one or more root passwords is
the attacker. If the password is associated with
a shared host, for example a supercomputer or
a general purpose email host, the attacker can
gather root and personal passwords by directly
snooping on local login sessions (e.g. by snooping
the kernel cl i st data structures). This type of
attack can also occur when an external attacker
learns the root password. In either case, the at-
tacker can easily build a substantial list of legiti-
mate passwords.

3.2/ TRUSTED HOST COMPROMISE

Another straightforward vulnerability involves
the compromise of a generally trusted host. This
is usually an internal machine, but could also be
situated off-site. For example, a supercomputer
center may implicitly trust a machine situated at
a university or a government laboratory. Any-
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body with root access to that machine can locally
“sniff” any password typed there, for example in
response to the supercomputer center’s telnet or
su password queries.

This is very similar to the network sniffing at-
tack, except that it is more difficult to prevent. An
encrypted login session, for instance, can protect
against interception along the session’s route, but
sniffing on the client side examines the typed data
before they are encrypted. On the other hand this
vulnerability is inherently a smaller risk, because
it requires compromise of an endpoint machine in-
stead of one of many on a network route. From
the attacker’s point of view, the intermediate ma-
chines are much more desirable targets, because
they usually carry more traffic and hence many
more passwords.

Another mitigating factor is that endpoint ma-
chines are generally better monitored and more
difficult to compromise. It is relatively hard to
detect suspicious activities on busy ISP host, es-
pecially when compared with a desktop machine
“owned” by an individual. Nonetheless, local
host sniffing attacks are a substantial threat and
should be addressed.

3.3/ SPOOFING

Spoofing, in general, is an attack based on as-
suming a host identity to which one is not enti-
tled. TCP/IP tools conventionally determine the
identity of a remote host by looking at its net-
work address. In other words, the server assumes
that the remote client is entitled to make use of
its network address and that the packets seem-
ing to come from that address actually do. This is
a painfully naive assumption, perhaps defensible
in the mid-eighties when TCP/IP-capable comput-
ers were generally expensive machines under pro-
fessional control, but certainly an unacceptable
risk in today’s environment of inexpensive UNIX-
capable portable computers. All an attacker has
to do is look for a trusted remote host that has
crashed or been taken down for maintenance, then
run a few configuration commands to assume its
identity. Since the attacker has full privileges on

his or her own machine, it is then trivial to assume
the identity of a legitimate user of the spoofed ma-
chine and to gain access to a remote host that
trusts it.

There are more sophisticated spoofing attacks.
For example, Domain Name Service (DNS) spoof-
ing. This is an indirect attack on the mechanism
used to authenticate BSD-style rcmds!. The most
common use of the remd authentication mecha-
nism involves comparing the hostname of the orig-
inating connection against an access control list:
if the hostname is on the list, access is permit-
ted. However the incoming connection does not
actually carry a hostname; it carries an IP ad-
dress. Host names are mapped to addresses using
a name resolution scheme, generally DNS. If an
attacker can illegitimately alter the DNS (name,
address) mappings so that the attacker’s machine
address resolves to a trusted host’s name, he or
she gains access to the target machine.

Alternatively, an attacker could corrupt the
DNS database of the originating host, so that a
commonly used remote hostname is mapped to
an IP address belonging to an attacker-controlled
machine. A local user trying to connect to that
host naively types his or her password; the at-
tacker reads it, stores it, and then uses it to trans-
parently set up a connection with the legitimate
target machine. The end result is a compromised
password and only a slim chance of the user de-
tecting a well implemented attack.

If an attacker has physical access to a worksta-
tion connected to the internal network, he or she
can easily unplug that machine’s network cable
and plug in a laptop. It is then possible to mas-
querade as the workstation knowing that there is
no possibility of address collision. If the attacker
is a former or current employee and is familiar
with local staff and policies, he or she will be able
to target an attack to gain the maximum advan-
tage.

1The Remds are Berkeley Software Distribution network
clients such as rlogin, rsh, and rcp, all of which employ an
underlying networking library function called ruserok() for au-
thentication.
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3.4/ PHYSICAL SECURITY

As previously mentioned, having physical access
to computers on the target network makes some
attacks much easier (e.g. spoofing). In an egre-
gious case, for example if the attacker happens
across an unprotected machine where a legitimate
user is logged in, a number of nasty opportuni-
ties exist. Easy ones include copying the pass-
word file for later cracking, inserting Trojan horse
programs to capture passwords, and of course
the compromise of data private to the legitimate
owner of the account. The effects of the latter
could range from embarrassment to corporate es-
pionage to exposure of additional security vulner-
abilities.

Although stumbling across an active, unpro-
tected login session would be serendipitous, there
are equally useful and less haphazard ways to
gain access. For example, some older systems pro-
vide the option of a boot into privileged single user
mode without requiring a password. The attacker
can reboot the machine into single user mode, cre-
ate a set-UID root shell, for instance, and then
complete the boot into multiuser mode. This gives
root access to the machine. Other attacks in-
clude the use of “magic” key combinations to force
reboots or to terminate the X server, which can
sidestep a screen lock. If the X session was started
from a terminal login, rather than by Xdm, this
can give access to a user’s account.

Even if machines are well defended against this
type of attack, the network itself is vulnerable
to physical compromise. It is a simple matter to
slip into an unoccupied cubicle—perhaps at lunch
time—and plug a portable computer’s Ethernet
cable into a wall jack. At this point there are any
number of sniffing and spoofing vulnerabilities to
exploit, most of which are similar to their external
counterparts, but exacerbated because the attack
is originating from what appears to be a trusted
internal host.

3.5/ SHARED LOGINS

Shared logins are a significant security vulnera-
bility, for several reasons. The first is that they
reduce accountability. If somebody tampers with
a personal account, the tampering is usually dis-
covered by the legitimate account owner, because
he or she recognizes some irregularity—for exam-
ple, a “last login” message indicates login from a
host unknown to the user, or a new file or directory
suddenly appears. A shared login is not “owned”
by any one person, and so these events are likely
to pass unnoticed. If a shared account is compro-
mised, the activity of the attacker will be difficult
to reconstruct, because other legitimate users will
disturb the evidence.

If the account is shared among many people or
is frequently used, it is particularly dangerous.
For example some sites have an “operations” ac-
count that allows their administrative staff access
to all computer systems. By cracking this account,
an attacker gains access to every machine at the
site. Nobody is likely to recognize illegitimate use,
as mentioned above, and nobody will think twice
if they see this user su to root. Furthermore, the
more an account is used, the more chance there
is that it will be cracked in the first place—i.e.
the more opportunities there are to stumble across
a forgotten login session, or the more times the
cleartext account password traverses the network.
Thus the chances of an attacker gaining access to
a busy account are significantly higher than to a
personal account. Combining this with the diffi-
culty of detecting such a compromise, and the de-
gree of access it affords, it should be clear that this
type of shared account should be avoided.

3.6/ EMAIL FORGERY

Forging email is trivial, and if the attacker com-
poses the message carefully the forgery may be
very difficult to detect. This is especially true if
the attacker knows something about local proce-
dures and staff assignments, which he or she can
learn from a variety of sources—for example by
careful reading of the site’s support web pages, or
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by intercepting clear text messages on the local
nets.

Usually, forged email is only indirectly useful to
an attacker. For example, one could send a mes-
sage asking an administrator to do something that
requires root access, and then monitor that ad-
ministrator’s network traffic to try to intercept a
root password. But a more bold approach might
work too. For example, if the “owner” of a desk-
top workstation asks that another user be given
an account there, the account may be created al-
most immediately and without any further autho-
rization. If an attacker has cracked an otherwise
inactive account but wants access to a different
subnet, he or she could forge a message asking for
an account on an appropriate machine. If done
carefully, this could pass without notice and would
probably not be detected quickly.

Email forgery is particularly difficult to detect
and trace if it originates from a local host or a ma-
chine spoofing a local host. Disgruntled employees
have the added advantage of being intimately fa-
miliar with local staff roles and procedures, which
helps to reduce the chance of detection because of
a content irregularity.

3.7/ INDIRECT VULNERABILITIES

A more subtle vulnerability results from the rou-
tine use of cleartext network transmissions. Al-
though the information contained in the transmis-
sions may not seem sensitive, it can sometimes
be used to an attacker’s advantage. The apoca-
lyptic example is that journalists were supposedly
able to correlate the beginning of major U.S. mili-
tary operations with dramatically increased pizza
deliveries to the Pentagon. The risks resulting
from this type of traffic analysis attack often seem
far-fetched and not particularly threatening, but
in fact the monitored information can suggest an
easy avenue of attack. For example, an attacker
can see in a mundane email message that a cer-
tain host will be down for some period of time,
making that host a prime target for spoofing. Or
perhaps the attacker observes that certain net-
work addresses are reserved for temporary or test

use, and thus are “expected” to behave oddly.

4/ STATISTICAL THREAT ASSESSMENT

A system administrator reviewing the list of po-
tential security vulnerabilities could well feel
daunted. To address them all requires substantial
effort, and perhaps more importantly may end up
interfering with users’ legitimate activities. Most
administrators will be willing to trade-off a small
amount of risk for a substantial reduction in work
and cumbersome restrictions. To do so intelli-
gently, an administrator should understand not
only the consequences of each type of attack, but
also the likelihood that it will be undertaken. His-
torically, the former information is easy to come
by, usually included with security vulnerability
alerts, whereas the latter is very difficult to find.

Dr. John Howard’s Carnegie Mellon University
PhD dissertation supplies a statistical gauge of
the prevalence of various types of attack. Howard
analyzed security incident reports gathered at
CERT/CC, the Computer Emergency Response
Team Coordination Center. CERT/CC was estab-
lished by the Defense Advanced Research Projects
Agency (DARPA) in November 1988, within weeks
of the notorious “Internet Worm” incident, and
serves as a clearinghouse for computer security
information. Howard developed a taxonomy of
computer security attacks and used it to organize
the CERT records from 1989 to the end of 1995.

Howard describes his taxonomy as “opera-
tional” and “process based”: attackers use tools to
gain access of a certain type and via certain a vul-
nerability. This access has results that are pre-
sumed to be useful in achieving one or more o0b-
Jectives. Howard examined CERT’s logs and ex-
tracted information appropriate to each of these
categories. He then statistically analyzed the re-
sults.

A CERT report describes a security incident.
One incident may involve several attacks—in
some cases a large number. An incident report
also lists any exploited vulnerabilities, any tools
that may have been used, and the results of the
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attacks. However there is no direct association
between these data points and specific attacks,
just a general association with an incident. Thus
Howard is unable to statistically analyze the na-
ture of attacks; he is forced by the source data to
work with incidents, which may each include sev-
eral vulnerabilities, tools, or results. One conse-
quence is that a single incident may be counted in
several categories, so that in some cases the num-
ber of incidents associated with sub-categories
may total more than the overall number of inci-
dents.

One caveat to be considered when review-
ing Howard’s data is that the source records
are incomplete relative to his taxonomy, and
CERT/CC’s objectives in gathering them are dif-
ferent from Howard’s analysis objectives. For
example, CERT/CC places much more emphasis
on the vulnerabilities that are being exploited
than the objectives or nature of the attackers.
This leads to a paucity of information in some of
Howard’s taxonomical groups.

In many cases it seems reasonable to extrapo-
late results to the Internet population as a whole,
but this is not necessarily valid. Readers inter-
ested in a detailed discussion are referred to the
dissertation itself[1].

Despite these minor issues, Howard’s work is
valuable. The caveats described above are due to
the limitations in the source material, rather than
his analysis. In the past, most “threat models”
have been largely speculative, based on a small
amount of local data at best. Howard does a fine
job of analyzing a significant population of secu-
rity incidents and providing a quantitative basis
for a threat model. Perhaps the most important
information is the relative frequencies of incident
types, vulnerability exploitations, and tools used.

4.1/ ATTACKERS

Unfortunately there are few data in this area. 35
of 4,299 incidents reported to CERT/CC included
the identity of the attacker. It appears that in
many more cases the identity of the attackers was
determined but not reported. Howard speculates

that this is due primarily to CERT/CC’s mode of
operation, in which attention is focused on events
as they occur. By the time the activity has stopped
and the target site’s administrators begin to track
down the intruder, there is less involvement with
CERT/CC. Another possibility is that many “at-
tacks” are mischievous rather than malevolent,
and that reporters preferred not to subject the cul-
prits to possible punishment.

Of the 35 incidents that do include the at-
tacker’s identity, 18 involved attacks by external
“crackers” and 17 were initiated by former em-
ployees. However it is not clear whether the at-
tacks initiated by former employees necessarily
occurred from within the target site’s computing
environment, nor that external crackers necessar-
ily attacked from the outside. It would be unwise
to base strong conclusions on such a small and in-
complete sample, but clearly it is prudent to as-
sume that there is a legitimate internal threat as
well as the more widely publicized external one.

4.2/ TooLs USED

Howard’s tools category attempts to determine
methods of attack. Only 18.1% of incidents re-
ported to CERT referred to the use of one or more
tools to gain access. The most popular are listed in
Table 1. The percentages are fractions of the num-
ber of incidents that mentioned tools, rather than
of all incidents (i.e. percentages of the 18.1%).
Also note that as mentioned in the introduction
to this section, the tool categories are not mutu-
ally exclusive: for example, reports that mention
the use of Trojan horses often mention an attack
on more than one program. This means that the
sum of the number of incidents mentioning spe-
cific tools is greater than the total number of in-
cidents for which the use of at least one tool was
reported.

An additional complication particular to the
tools category is that more sophisticated tools nec-
essarily involve the use of less sophisticated ones.
For example, a toolkit designed to break into root
accounts may include scripts and programs as
well as user commands that initiate them. Rather
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than describe this incident as using all four types
of tool, Howard counted it as the most sophisti-
cated category—in this case as the use of a toolkit,
not a program, script, or user command.

eral attacks, each resulting in a different type of
access. Howard’s resolution is to categorize an in-
cident based on the most severe type of access, ac-
cording to an intuitively reasonable hierarchy of
severity. Table 2 summarizes the data.

| % Tool Incidents | Tool Used

57.8% Trojan horse | % All Incidents | Type of Access |
56.0% login 89.3% Unauthorized access
15.6% telnet 37.5% failed attempts
11.8% pPs 27.7% to root accounts
16.6% other (42 programs) 26.9% to other accounts

31.2% Sniffers 10.7% Unauthorized use

23.8% Toolkits® 5.1% disclosure of information®
14.3% scanners (e.g. ISS, SATAN) 3.1% corruption of information?

9.9% targeting root (e.g. rootkit) 2.4% denial of service
7.9% Password cracking tools

%Toolkits are pre-packaged collections of scripts and pro-
grams that are useful for breaking into computer systems, of-
ten including instructions and suggestions for erasing evidence
of the attack.

Table 1: Most Common Cracking Tools

For our purposes, the most significant entry in
Table 1 is for sniffers: tools that monitor net-
work transmissions and are capable of intercept-
ing cleartext passwords or other sensitive data.
Almost a third of the incidents reporting the use
of a tool mentioned the use of a sniffer, and ac-
cording to Howard the use of sniffers is increasing
(as discussed later). The other obvious observa-
tion is that Trojan horse attacks are very popular.
This is of less concern, primarily because Trojan
horses can be effectively found and neutralized
using readily available checksum monitoring pro-
grams. The “toolkits” category included tools de-
signed to acquire root privileges, primarily rootkit,
and “scanners”, such as ISS and SATAN.

4.3/ TYPE OF ACCESS

Howard defines a type of access category in his tax-
onomy. This describes the level of access gained
and gives an indirect idea of the objectives of the
attacker. Again, it is not immediately clear how
to categorize an incident, since it may involve sev-

%approximately 80% of disclosure incidents involved the use
of anonymous ftp for the deposit or transfer of pirated software

ball of these incidents were classified as IP spoofing; approx-
imately 95% involved email source spoofing and the remainder
were other packet source spoofing incidents

Table 2: Types of Access

The first observation is that roughly 90% of
incidents reported to CERT/CC involved attacks
aimed at gaining access to the target machine.
The count of failed attempts is probably low, since
they are much less likely to be reported. A more
interesting point is that the root account is as
likely to be the target of a successful attack as a
user account. Again the statistics may be mislead-
ing, since attacks on the root account are more
serious and probably more likely to be reported.
Furthermore if a single incident involves the com-
promise of ten user accounts and the root account,
it is counted as a root account break-in because
this is the most serious type of access.

The remaining 10% of incidents involved the
misuse of a computer system to which the miscre-
ant had legitimate access. Taking into account the
table footnotes, the three dominant misuses are
staging for software piracy, email source spoofing,
and denial of service attacks. The latter are gener-
ally very difficult to protect against, and although
they are fairly easy to neutralize once they hap-
pen, they are inconvenient enough that most ad-

10
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ministrators will be glad to note their relative in-
frequency. For our purposes the most interesting
information is the frequency of email spoofing: es-
sentially 3% of all incidents reported to CERT/CC.

4.4/ EXPLOITED VULNERABILITIES

Roughly half of the CERT reports (45.3%) specif-
ically mention one or more vulnerabilities that
were exploited by attackers. The most common
vulnerabilities are listed in Table 3. The percent-
ages represent the proportion of incidents men-
tioning vulnerabilities, not of all incidents. As
with the “tools” report, many incidents mention
multiple vulnerabilities.

% Vulnerabilities | Exploited Vulnerability |

48.1% Password problems®
22.9% Sendmail
12.8% Trusted hosts
10.8% .rhosts
2.7% hosts.equiv
12.8% “Improper” configuration®
12.2% TFTP ¢
10.8% Mail spoofing
8.7% FTP
7.1% NFS
5.3% Sun NIS
3.5% Sun YP

%For incidents describing password vulnerabilities, 63.1%
mentioned password file compromise (usually copying), 47.8%
mention that a password was cracked, and 16.6% mention that
a weak password was easily guessed.

bRefers to cases where network software was clearly mis-
configured; see the text for more explanation.

¢TFTP vulnerabilities became well known during the re-
porting period, and statistics indicate that the rate of incidence
dropped over time, suggesting that they were being corrected.
However a few incidents continued to occur.

Table 3: Vulnerabilities

Almost 50% of vulnerabilities that provided ille-
gitimate access involved passwords. According to
the CERT data, roughly the same number of inci-
dents were those in which a password was thought
to have been cracked. This seems speculative,

since there is little to demonstrate how the inci-
dent reporters could make that determination. To
do so conclusively would be quite difficult: an ad-
ministrator would have to find a “smoking gun”,
i.e. a password cracking program running on the
target machine. However, password cracking tools
were mentioned in only 52 reports, compared with
448 in which password cracking was mentioned.

Perhaps a safer conclusion would be that of inci-
dents mentioning the exploited vulnerability, 23%
involved the use of a password thought to be se-
cure. A separate category, which likely has some
degree of overlap, is weak passwords: 8% of inci-
dents mentioning a vulnerability also mentioned a
weak password thought to be easily guessable. In
either of these cases snooped IP data could lead
to the same result; it is unclear why one should
assume that brute-force cryptanalysis occurred.

Also among the top four vulnerabilities is the
exploitation of trusted hosts systems, i.e. the
ruserok() based authentication system. Combine
this with the exploitation of passwords as previ-
ously discussed, whatever the details leading to
the discovery of the password, and it is clear that
the vulnerabilities of the base UNIX authentica-
tion system are being actively exploited.

The “improper configuration” category ad-
dresses the proposition that the majority of break-
ins result from operator error, i.e. that the tar-
get system is misconfigured and allows open ac-
cess through some network service. The CERT/CC
records suggest otherwise, since fewer than 13%
of the compromises in which the cause was identi-
fied indicated misconfiguration. Nonetheless it is
a significant problem, particularly since network
software is increasingly complicated hence more
prone to misconfiguration.

The incidents mentioning sendmail, TFTP,
FTP, NFS, and Sun distributed password systems
indicate that application-level vulnerabilities con-
tinue to be a significant problem.

Mail spoofing also appears as a common vulner-
ability. This is somewhat puzzling, as mail spoof-
ing is unlikely to lead to unauthorized access. Fur-
thermore, there is a numerical discrepancy. Ac-
cording to Table 3, 210 incident reports mentioned
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email spoofing. However Table 2 and its footnote
state that 95% of 3.1% of corruption of informa-
tion incidents, or only about 127 reports, involved
email source spoofing. Most likely, the remaining
email spoofing cases were mentioned in an inci-
dent report that also clearly described an access
event and hence was sorted into the more serious
unauthorized access group.

4.5/ TRENDS IN SEVERE INCIDENTS

Howard developed criteria by which he classified
a few of the 4,299 reported security incidents as
severe. Choosing criteria was not a trivial proce-
dure, since there was no clear single factor that
could be used for discrimination. Howard’s statis-
tical reasoning is not reproduced here, but the fi-
nal result was the selection of 22 severe incidents,
each of which lasted at least 79 days, involved at
least 62 sites, resulted in at least 87 messages to
CERT/CC, and involved a root break-in.

Of the 22 severe incidents, 21 appeared to be
three phase attacks. First, the attacker estab-
lished an account on the target machine, through
password cracking, sniffing of cleartext pass-
words, or other means. Next, the attacker ex-
ploited local vulnerabilities to gain root privileges.
Finally the compromised machine was used as a
staging point for attacks on other systems. The
one exception to the three-phase pattern was an
incident involving IP spoofing.

Early in 1994 there was a brief period during
which no severe incidents were occurring. This
time was an epoch of sorts: the incidents occurring
afterwards had a clearly different character from
those before. Prior to the epoch there were ten in-
cidents, six classified as using command line tools,
simple scripts, and password cracking, two involv-
ing sniffers, one involving TFTP attacks, and one
case of FTP abuse for software piracy. After early
1994, command line based attacks no longer oc-
curred. Of the twelve severe post-epoch incidents,
eleven involved sniffers, and six of those also in-
volved the use of toolKkits.

The remaining incident, in 1995, involved IP
spoofing. The attackers essentially built IP pack-

ets to order, inserting whatever originating ad-
dress they desired. Since the ruserok()-based au-
thentication used in most UNIX networking util-
ities relies on source address to determine the
trustworthiness of the user identification, this
gave attackers access to the target machine. In
some cases root access was gained directly.

4.6/ SUMMARY AND CONCLUSIONS

The vast majority of reported security incidents
involved attempts to gain unauthorized access
to target computers. Almost one third of these
resulted in the compromise of the root account.
More than half of access attacks exploited vul-
nerabilities in passwords and the trusted host
system—in other words they attacked the basic
authentication system used in BSD-based UNIX
networking. The remainder attempted to exploit
network application weaknesses, particularly in
sendmail but also in commonly used tools like
FTP and NFS.

The trend in severe incidents is clearly towards
the use of sniffers, which can pick passwords out
of cleartext network transmissions, and other low
level TP attacks, such as spoofing and connection
hijacking.

The conclusion is that the current widespread
reliance on passwords and IP packet source
addresses for user authentication is increas-
ingly dangerous, particularly when passwords
are transmitted in cleartext by standard network
applications. System administrators concerned
about security should be looking to transmission
stream encryption and cryptographically strong
authentication protocols to reduce their vulnera-
bility. The next section is a discussion of technol-
ogy that can be used for these purposes.

Although the trend in severe incidents is to-
wards “deeper” attacks, application-level vulner-
abilities are still being exploited, and attackers
are increasingly doing so using automated scan-
ners and toolkits that can probe a large number of
systems and vulnerabilities very quickly. Luckily
these weapons can also be used by administrators
to probe their own systems, so that the holes can
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be closed before an attacker finds them. The best
defense against this class of attacks is a thorough
and continuous program of self-inspection.

5/ DEFENSIVE TECHNOLOGY

This section reviews technology that can be incor-
porated into security tools to help close some of
the vulnerabilities just described. Later, tools that
actually implement some of these ideas are intro-
duced.

The focus is on cryptography, because it is the
most powerful and versatile protection against
sniffing, IP-spoofing, and other “low-level” at-
tacks.

Application level attacks are best prevented
with automated self-scanners and a reasonable
level of vigilance. There are a number of tools
available to perform this scanning—in many cases
the same tools used by attackers—and to auto-
mate procedures that allow an administrator to
maintain a high level of vigilance without invest-
ing too much time. These types of tools are not
discussed in this paper; the focus is on the “deep-
ening” front of attack.

5.1/ BASIC CRYPTOGRAPHY

Ordinary, unencrypted data is called cleartext; en-
crypted data is called ciphertext. The mathemati-
cal algorithm that converts cleartext to ciphertext
(and vice versa) is called a cipher or cryptographic
algorithm. The implementation of the cipher is a
cryptosystem. A person who studies ways of effec-
tively encrypting data is a cryptographer, whereas
a person who specializes in extracting cleartext
from the ciphertext—in other words in breaking
a code—is a cryptanalyst.

Ciphers employ a key: a value used to spec-
ify some internal details of the cipher’s operation.
To decrypt a message, one needs to know both
the cipher and key that were used to generate it.
The possible range of values of the key is called
the keyspace, and the cipher is most secure when
the keyspace is very large. If the keyspace is too

small, a cryptanalyst can exhaustively search it to
determine which key will decrypt the ciphertext.

The ciphers of most concern fall into two cate-
gories. Symmetric ciphers are those for which only
a single key is necessary. Ciphertext generated by
a particular key can be decrypted using the same
key?. In order to use a symmetric cryptosystem
for communication, both the sender and the recip-
ient of a message must know the key. In addition,
the key must be kept secret if the communication
is to remain secure. For this reason, symmetric
ciphers are often called secret key algorithms.

Most symmetric ciphers are also block ciphers,
meaning that they encrypt data in chunks known
as blocks. There are also stream ciphers, which
encrypt data continuously as it “flows through”
the algorithm.

An asymmetric cipher, on the other hand, is one
that employs two “linked” keys, called a key pair.
Knowledge of either key does not provide any use-
ful clues about the value of the other key, and data
encrypted with one key can only be decrypted with
the other. Generally one key is kept secret and is
known as the private key, and the other is freely
available and called the public key. The great ad-
vantage of this type of cryptosystem is that the
public key can be advertised freely, so that any-
body wishing to communicate securely with the
private key holder need not be trusted. In part be-
cause of this, asymmetric cryptosystems are also
known as “public key” systems. The primary dis-
advantage of this approach is its speed: asymmet-
ric algorithms are typically three orders of magni-
tude slower than symmetric ones.

Hybrid cryptosystems use both types of cipher
in concert, in an attempt to reap the advantages
of both without incurring the disadvantages. Typ-
ically a public key system is used to securely ex-
change a symmetric key at the beginning of com-
munications. The symmetric key, or session key,
is then used to encrypt the subsequent data ex-
change. Thus the key management advantages of

2Technically, the definition of a symmetric cipher is broader.
The encryption and decryption keys do not have to be the same,
as long as each can be derived from the other in a reasonable
amount of time.
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the asymmetric approach are retained, as is the
speed of the symmetric system.

Another cryptographic tool is the one-way hash
function, also known as a cryptographic checksum
or a message fingerprint. A one-way hash func-
tion generates a relatively short hash value from
a longer piece of cleartext. A typical hash size is
on the order of 128 bits. Knowledge of the hash
value does not provide any information that could
be used to reconstruct the input text, or for that
matter any cleartext that would hash to the same
value. Furthermore, two nearly identical pieces of
input cleartext hash to significantly different val-
ues. This means that one-way hashes can be used
to verify that two large pieces of data are identi-
cal, without revealing any information about the
nature of the data. Later, two applications of one-
way hashes are described: digital signature and
one-time passwords.

To be useful, ciphers and one-way hashes must
be incorporated into a cryptographic protocol.
This is a formalized dialogue between two or more
parties that employs cryptography to enhance se-
curity. An example would be the procedure de-
scribed earlier, by which two agents exchange a
symmetric session key using a public key system.
The exact syntax and semantics of the interaction
are defined in a protocol. A strong cryptographic
algorithm is rendered useless if it is used in a
flawed protocol.

Finally, note that even an excellent protocol that
employs a strong cipher can be rendered insecure
by a poor implementation. A real-world example
of this is presented later, but in the meantime con-
sider an implementation of a secret key exchange
protocol that retains the key in memory after it
has been shared. An attacker could force a core
dump and use a debugger to retrieve the key, re-
gardless of the strength of the cipher or the clev-
erness of the communications protocol.

5.2/ COMMON CIPHERS AND HASHES

A detailed technical discussion of cryptographic
algorithms is far beyond the scope of this paper. In
this section some common contemporary ciphers

are briefly discussed.

SYMMETRIC CIPHERS

The Data Encryption Standard, or DES, is the
U.S. Government’s “official” cipher[25]. (It was
also adopted by ANSI, the American National
Standards Institute, under the name DEA, where
the ‘A’ stands for “algorithm”.) DES is a 64-bit
block cipher, meaning that it converts cleartext to
ciphertext in 64-bit units. A DES key is 56-bits
long, which provides a keyspace now considered
to be too small.

One way to use DES more securely is to employ
it repeatedly. Triple-DES, or 3DES, uses three
keys and three passes of the DES algorithm and
is considered secure.

Skipjack is an algorithm designed by the Na-
tional Security Agency. It uses an 80-bit key. Skip-
jack gained attention because it was to be the ci-
pher used in the infamous Clipper chip, which be-
came subject of intense controversy. Skipjack it-
self is a secret algorithm, which means it is not
open to scrutiny by the general cryptography com-
munity. Algorithms that rely on being kept se-
cret are fundamentally insecure. Although it is
unlikely that Skipjack falls into this category, it
is certainly not subject to the level of scrutiny
to which publicly available algorithms like DES
are subjected. Another concern was that Clip-
per’s design deliberately included a “back door”
that would enable a person knowing a particular
key—a different key than the one that was used
for encryption—to decrypt ciphertext generated
using the chip. The U.S. Government planned to
split these special keys and store them in two in-
dependent “escrow” databases. If an agency ac-
quired a court ordered wiretap, the key halves
would be retrieved and combined, and the target’s
supposedly secure communications would be vul-
nerable. Note that this is a “feature” of the Clipper
chip, not of Skipjack itself (although the secrecy of
the algorithm precludes confirmation that Skip-
jack does not have its own deliberate weaknesses).
Neither the secrecy nor the key-escrow scheme
were the real cause of alarm, which resulted from
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the Government’s intent to mandate Clipper’s use.
Under the original scheme it would be illegal for
a commercial wireless telephone manufacturer to
use any encryption system other than Clipper. As
of mid-1998, the debate is unresolved.

RC2 and RC4 were developed at RSA Data Se-
curity, Inc. Both are variable key-length algo-
rithms; RC2 is a 64-bit block cipher, and RC4 is a
stream cipher. Both are roughly an order of mag-
nitude faster than DES and about as strong with
a 56-bit key. Both algorithms were originally re-
stricted (RSA proprietary), hence subject to some
criticism, although RSA has permitted external
analysts to examine them for the purposes of ver-
ifying their security. RC2 is now described in an
Internet RFC[26].

RC5 is a newer block cipher that supports a
variable block size and a variable key size. It, too,
is a product of RSA Data Security.

The International Data Encryption Algorithm,
IDEA, is a 64-bit block cipher that uses a 128-bit
key[27]. It is generally considered secure and is
comparable in speed to DES. Unfortunately IDEA
is patented in some countries, and where that is
the case its commercial use is forbidden. Other-
wise, it is an excellent cipher.

Many other block ciphers exist. Interested read-
ers are referred to Bruce Schneier’s canonical
cryptography text[3].

ASYMMETRIC CIPHERS

The first public key system, publicized in 1976, is
called the Diffie-Hellman algorithm (named after
its designers)[28]. Diffie-Hellman is more prop-
erly a key agreement protocol. It allows two
agents, who otherwise share no information, to es-
tablish a shared secret key over an insecure trans-
mission channel. Diffie-Hellman is still used for
key exchange but cannot be used to encrypt or de-
crypt messages.

Perhaps the best known public key algorithm is
RSA, named after its designers (Rivest, Shamir,
and Adleman)[29, 30]. RSA can be used for en-
cryption or decryption and for authentication. For
a public key cryptosystem, RSA is old: it was in-

vented in 1977. Thus RSA has survived more than
twenty years of intense scrutiny—unlike many
other public key systems proposed since Diffie-
Hellman. Combined with its versatility, RSA’s ap-
parent security makes it quite popular. As previ-
ously mentioned, RSA is slow: at least 100 times
slower than DES, and an order of magnitude or
two slower than that if both are implemented in
hardware.

There are alternatives to RSA, but it is by far
the most popular public key system.

ONE-WAY HASHES

The best known hash functions are the message-
digest algorithms designed by Ron Rivest. All
three generate a 128-bit hash code. The first,
MD2, was invented in 1989[18]. There is a known
vulnerability, but only if the algorithm is incom-
pletely applied[19]. MD2 was designed and opti-
mized for 8-bit machines.

In 1990 Rivest invented a faster hash,
called MD4, that was optimized for 32-bit
architectures[23]. In 1995, MD4 was “broken”—
that is, a technique was discovered that generated
collisions in less than a minute on a contempo-
rary home computer[20]. A collision occurs when
two pieces of input data hash to the same value.
If a collision can be quickly generated, the hash
code is no longer trustworthy as an indication that
the original data is unmodified. As a consequence,
MD4 should not be used.

Even before this vulnerability was found, Rivest
redesigned MD4 to make it more secure. The re-
sult was MD5, which is slightly slower than MD4
but much more secure[24]. MD5 is the most com-
monly used one-way hash function.

The main alternative to MD5 is the Secure
Hash Algorithm, SHA, developed by the U. S. Gov-
ernment’s National Institute of Standards and
Technology[21]. SHA is similar to MD5 but pro-
duces a 160-bit hash and is slightly slower. SHA
had an unpublished flaw that was corrected in
SHA-1, published in 1994[22]. SHA-1 has no
known cryptographic weaknesses.
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5.3/ ROUTINE ENCRYPTION

One obvious solution to the problem of password
interception is to stop transmitting cleartext pass-
words, and one straightforward way to do that is
to encrypt the passwords before sending them. A
broader solution that addresses privacy and the
peripheral risks associated with network traffic
interception is to encrypt all network traffic. This
has an added benefit: if passwords are the only
encrypted network traffic, it becomes much easier
to sniff out the encrypted password and subject it
to a cracking effort.

There are two serious objections to the adop-
tion of encryption as a standard component of a
network protocol stack—the net effect of routinely
encrypting network traffic. The first is the cost.
Executing encryption algorithms costs CPU time.
An interactive login session, with a relatively slow
thinking and typing user at one end, incurs very
little CPU cost, although the encryption overhead
may add latency. For high volume transmissions,
such as file transfers to a mass storage system,
the CPU cost of decryption may place a significant
load on the target machine. Should this prove pro-
hibitive, there are several options. The data can
be transmitted unencrypted if they are not sensi-
tive, or they can be encrypted at the source and
then transmitted through an unencrypted chan-
nel.

The second objection to routine encryption is a
practical one. The “standard” network utilities—
that is, the ones that are shipped with most oper-
ating systems—generally do not support encryp-
tion. Fortunately, as is discussed in more detail
later, there are a variety of low cost or free third
party packages of excellent quality available to
provide these services.

5.4/ AUTHENTICATION

One way to use encryption to greatly improve se-
curity is to build a cryptographically strong au-
thentication system. Both symmetric and asym-
metric approaches can be used to build such a
system. Throughout this discussion the Kerberos

term principal denotes an agent with an identity
that may be authenticated. An authenticator is a
piece of data that asserts the principal’s identity.

PRIVATE KEY AUTHENTICATION

In an authentication system based on a symmetric
cipher, the ability to encrypt data using a particu-
lar key implicitly authenticates the key holder.

This introduces a paradox. In order to authen-
ticate a key holder, one must be able to decrypt a
proffered authenticator. But to do that, one must
hold a copy of the secret key. Since possession of a
key implies identity, sharing the key implies shar-
ing identity. Distributing the key to all those who
would want to verify the owner’s identity would
obviously defeat the point: all of the people with
the key would now be capable of masquerading as
the key owner.

The solution employed by systems like Kerberos
is to create a trusted third party that stores the
keys of all principals. This effectively bootstraps
the system. Consider a simplified scenario in
which agent A wants to authenticate to agent B.
(This is purely explanatory and not intended to
describe the behavior of any particular real-world
authentication system. In fact it is flawed, but il-
lustrates the general approach.) First, A sends a
message encrypted with its secret key (A) to the
central authority. The central authority decrypts
the message using key A: if the decryption pro-
duces meaningful data, the person who sent it
must be agent A. The central authority can then
encrypt a message verifying the identity of agent
A, using agent B’s key (B). Nobody but agent B can
decrypt the message, so it cannot be meaningfully
tampered with. The central authority returns the
new message to agent A, which sends it to agent
B as proof of its identity. If the message is legit-
imate, B can decrypt it. Since it knows that the
message could only have been created by the cen-
tral authority, which is implicitly trusted, and it
knows that the central authority would have de-
livered the message to A only if it could verify A’s
identity, B can be confident that A is who it claims
to be. Note that the scheme has two major de-
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pendencies: keys must never be shared, and the
central authority must be absolutely trustworthy:.

In a real symmetric encryption based authen-
tication scheme, such as Kerberos, a number of
complications are introduced. For example, steps
must be taken to ensure that authentication mes-
sages can not be intercepted and “replayed” by
attackers, which would allow them to adopt the
identity of the legitimate recipient (even if they
are unable to decrypt the message to view the
original authenticator). There is also an opera-
tional requirement to reduce the number of times
a user has to type in a password: once for every
authenticator would be far too inconvenient.

Symmetric encryption can be used to build a
strong authentication infrastructure. Its major
disadvantage is the requirement for the installa-
tion and management of a central authority. The
central authority must be be trusted absolutely by
all parties wishing to use the infrastructure: ob-
viously not a solution that scales well. The cen-
tral authority also becomes a critical resource that
must be protected at virtually all costs. And it is
a single point of failure, unless additional com-
plexity is introduced to replicate the authority’s
services (which will also increase risk, since there
will now be multiple private key archives).

PuBLIC KEY AUTHENTICATION

An authentication system based on asymmet-
ric cryptography does not require an absolutely
trusted third party key archive, so it avoids sev-
eral of the drawbacks of private key systems.
Again, consider a case where principal A wants
to authenticate to principal B. (And again, this
simplified example is purely illustrative.) The
first step, usually completed before the beginning
of the authentication protocol, is for A to dis-
tribute its public key. (The issue is addressed
in more detail later, because it turns out to be
the trickiest part of asymmetric authentication
schemes, but for the moment assume that B has
A’s public key and is absolutely certain that the
key belongs to A.) Once this precondition is met,
authentication is simple. A encrypts a message

using its private key and passes it to B. If the pub-
lic key decrypts the message then it came from
agent A. Note that knowledge of the public half
of the key does not allow B to masquerade as A,
because messages encrypted using the public key
cannot be decrypted with the public key. This
means that the public key, and hence the ability to
authenticate the private key holder, can be freely
distributed without compromising the the authen-
tication system.

With an authentication system based on an
asymmetric cipher there is no requirement for an
absolutely trusted third party key archive, but
there are still trust issues. How does agent B
know that the public key it holds really belongs
to agent A, and not some third party advertising
itself as A? An attacker could simply pretend to be
A, generate a new key pair, and hand B the new
public key. As long as B did not already have a
copy of A’s real public key, the substitution would
go unnoticed.

The problem of reliably associating principals
with their public keys is mitigated by some useful
characteristics of asymmetric cryptosystems. The
first is that an association only has to be estab-
lished once (unless the private key is compromised
and the principal is forced to generate a new key
pair). The next is that because of the nature of
asymmetric cryptosystems the public key can be
freely disseminated. This means that a princi-
pal anticipating involvement in an authentication
network can distribute its public key to a num-
ber of key servers. Those wishing to discover the
principal’s public key check with several servers
and raise an alarm if the returned keys are not
identical. This means that a potential attacker
must compromise all copies of the key mapping.
In other words, by more greatly disseminating the
public key one actually increases its security.

There are more complicated key registration
schemes that rely on digital signatures. If A
knows B personally, he or she can personally
vouch for the key mapping by “signing” a certifi-
cate that asserts the truth of B’s claim to its key.
When B distributes its key it also distributes A’s
certificate of authenticity. If A is well known or if
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B has enough certificates from enough principals,
the recipient can feel confident in accepting the
key. (As shown later, digital signatures can cryp-
tographically guarantee the integrity and origin of
a piece of data, such as a copy of a public key.)

Despite the existence of these schemes, man-
agement of the (principal, key) mapping is the
most difficult aspect of authentications systems
built on asymmetric ciphers.

HOST AUTHENTICATION

One way to make spoofing attacks more difficult
is to assign keys to hosts as well as users. In
other words not only can people be principals, but
computers can be too. For that matter, pieces
of software, such as well known servers, can be
authenticate-able principals. A host authentica-
tion infrastructure works analogously to the user
authentication schemes described above. Sym-
metric or asymmetric cryptosystems can be used.

A simplistic public key approach would be for
each host to store its private key in a file read-
able only by root but to advertise the public key as
much as possible. When initiating a connection,
a short cleartext message—the authenticator—is
encrypted with the private key and delivered to
the target machine. The public key is used to de-
crypt the authenticator, and if the resulting text is
meaningful the originating host’s identity is veri-
fied.

Once a cryptographically strong host authen-
tication system is installed, spoofing attacks be-
come much more difficult. An attacker needs
knowledge of a machine’s private key. (The at-
tacker’s alternative would be to replace all the
copies of the public key with a spoofed version,
and once again, good distribution of the public key
makes this extremely difficult.) If the host’s pri-
vate key has been properly protected, the only way
to learn it is by learning the host’s root password.

Note that as with all other cryptographic sys-
tems, the protocol and its implementation must
be secure. This can be difficult when dealing with
non-human principals, because they have no in-
trinsic knowledge that can be used to protect the

private key. A human can encrypt the private key
using a good pass-phrase, so that it can not be
stolen. A computer or a piece of software simply
has to store the private key on disk and protect it
using the filesystem’s access control mechanism.
This introduces a wide array of potential vulnera-
bilities.

Despite these difficulties, it is fairly easy to con-
struct a reasonably secure host authentication in-
frastructure, and doing so provides a profound im-
provement in security by making host spoofing
substantially more difficult.

5.5/ TWO FACTOR AUTHENTICATION

One way to improve even a strong authentication
system is to require more than just a password
for proof of identity. This is known as two factor
authentication, and has the advantage that com-
promise of a password does not result in a com-
plete break-down of the authentication system.
There are two basic schemes: one is to require
the use of a physical device, for example a card
that generates unguessable but verifiable identi-
fication codes, so that ownership of something is
required in addition to knowledge of a password.
The second is to actually sample a physical fea-
ture of the user, for example a fingerprint. The
former is simpler and currently cheaper; the lat-
ter is more secure and avoids the problem of lost
or forgotten authenticators. For the sake of this
discussion both schemes are referred to as “physi-
cal token” authentication.

These physical token schemes are complemen-
tary with the encryption-based schemes described
above. Both are useful on their own, but are
much more powerful when combined. The phys-
ical schemes close a hole that encryption does not
address: interception of data as it is typed on a lo-
cal machine, before it is encrypted. On the other
hand they add overhead and can be inconvenient.
One compromise is to require physical tokens only
for connections originating outside the local net-
work.
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5.6/ ONE TIME PASSWORDS

One time passwords (OTPs) are about as close to
cryptographically unbreakable password security
as can be achieved. The idea is that a password
is valid only once, so that intercepting it as it is
used is useless. This is implemented using a one
way hash algorithm, for example MD5. As de-
scribed earlier, one way hash algorithms compute
an output code based on an input pattern in such
a way that effectively no information about the
input pattern is retained in the output—in other
words there is no way to go “backwards” from the
output to the input.

Here is a typical implementation of a one time
password system. Prior to any use of the sys-
tem for authentication, there is an initialization
phase. The user is prompted for a secret pass-
word; the system reads it and repeatedly applies
the one-way hash, say for the sake of this exam-
ple 100 times. The result is stored in a local file.
There is no way to recover the password from the
stored hash value, because of the one-way prop-
erty of the hash algorithm.

Assume that after initialization, our user goes
to a remote site and wants to authenticate. Af-
ter running a login program, he or she receives
a challenge that includes the current hash count
(100 in this case). He or she runs a local pro-
gram, which can be carried on a floppy disk, a
palm- or lap-top computer, or even in a hardware
device such as a credit-card sized encoder. The
program reads the password and the hash count
(n) and generates the n-1’th hash code—in our ex-
ample the hash code resulting from running the
algorithm 99 times. The user then responds to the
challenge by typing (or cutting and pasting) the
99-hashed password as a challenge response. The
target computer knows only the 100th password
in the sequence, but by taking the 99th password
as delivered by the user and hashing it one more
time it can generate the 100th hash. If the newly
generated code matches the one recorded in the
local file, access is granted and the 100th hash is
replaced with the 99th hash just provided by the
user. The next time that the user wants to au-

thenticate, the key is hashed only 98 times, but
otherwise the same procedure is used.

If the user will not have access to a secure plat-
form on which to generate one time passwords,
he or she can pregenerate a list and physically
carry it in a wallet or purse. In our example, the
user might ask for the 90th to the 99th passwords.
There is a risk of losing the password sheet, but
because each password can only be used once—
and all of them can be easily discarded by setting
the server’s hash count to the next number below
the lowest numbered password that was lost—the
cost of such a compromise is not too severe.

One time password schemes usually map the
otherwise cryptic hash code to a sequence of En-
glish words. These are not meaningful except that
each of them is, by convention, mapped to a cer-
tain bit pattern. When these patterns are cate-
nated they form a valid hash code representing N
iterations of the hash algorithm with the user’s
pass-phrase as input.

5.7/ DIGITAL SIGNATURE

Digital signatures provide a way for the origina-
tor of a piece of data to cryptographically guaran-
tee its integrity and source. The goal of a digital
signature system is to accomplish through strong
cryptography the same guarantees normally as-
sociated with “real” signatures. (In fact, digital
signatures provide superior integrity and authen-
ticity guarantees.)

Although in theory a symmetric cryptosystem
can be used for digital signatures, in practice a
public key system is much more useful. A sym-
metric system requires a third party trusted by
both signer and recipient of the signed document.
This is unwieldy for the same reasons that a sym-
metric authentication systems are unwieldy, and
because of the way signatures are used it is often
less practical. All contemporary digital signature
schemes use asymmetric cryptosystems.

An alert reader will no doubt realize that once a
public key authentication system is in place there
is no real need for digital signatures. The same
goals can be satisfied by generating the original
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message, encrypting it with the author’s private
key, and distributing the public key. Recipients
of the encrypted message know that if they can
decrypt it using the author’s public key it must
have been encrypted with the private key, hence
it was created by the author. They can also be
sure that it has not been tampered with, because
there is no way to do so in such a way that the
decryption would then produce meaningful data.

Digital signatures offer additional features that
make them more useful that basic asymmetric en-
cryption. First, recall that asymmetric ciphers are
typically computationally expensive. The cost of
encrypting entire messages may be prohibitive.
Second, consider a situation where a document
must be signed by several principals. To do so us-
ing standard encryption requires the generation
of multiple encrypted copies of the document, each
at least the size of the original.

To address these problems, digital signature
schemes usually employ a one-way hash algo-
rithm to generate a “fingerprint” of the original
document. This fingerprint is then encrypted us-
ing the signer’s private key. Because of the prop-
erties of one-way hash algorithms, it is extremely
unlikely that any other document would hash to
the same fingerprint (on the order of 1 in 228
for MD5, for instance). Furthermore the finger-
print will be short (128 bits for MD5) hence can be
quickly encrypted using an asymmetric key, even
if the cipher is very expensive. Multiple signa-
tures can be appended to a document without sig-
nificantly increasing its size.

5.8/ SUMMARY

Cryptographic techniques can be used for privacy,
authentication, and digital signature. Routine
network traffic encryption reduces the amount of
information available to attackers, which makes
their task more difficult. The combination of
strong user and host authentication can make
spoofing very difficult. Two-factor authentication
practically eliminates the damage caused by a
stolen password, and one-time passwords can be
safely used from a host known to be compromised.

Digital signatures provide an inexpensive, cryp-
tographically strong mechanism for guaranteeing
the origin and integrity of a document. The com-
bination of these techniques effectively eliminates
some of the most glaring vulnerabilities in con-
temporary computer security systems. The next
question is whether implementations of this tech-
nology are available, and answer is that there are
a number of well designed tools to choose from.
Some are described in the next section.

6/ DEFENSIVE TOOLS

In order for the cryptographic techniques de-
scribed in the last section to be useful, they must
be integrated into practical tools. Here some of
the most useful contemporary security tools are
described.

6.1/ KERBEROS

Kerberos is an authentication system developed
at MIT and based on symmetric (private key)
cryptography. Its primary purpose is to pro-
vide strong authentication across an insecure lo-
cal area network[5, 6].

Kerberos works very similarly to the generic
private key-based authentication system dis-
cussed in the “abstract solutions” section. As with
all symmetric cryptography systems, a central,
absolutely trusted key manager is required. This
is known as the Key Distribution Center, or KDC.
Kerberos is not limited to authenticating users:
hosts or network servers can also have crypto-
graphically verified identities. The general Ker-
beros term for an authenticated entity is princi-
pal.

Authentication information is stored and trans-
ported in encrypted packets of information called
tickets. To use a particular network service, a
principal asks the KDC for a ticket for that service
and then uses this service ticket to authenticate to
the target server.

The first step in using Kerberos is acquiring a
ticket for the key distribution center itself. This
special ticket is called the ticket granting ticket, or
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TGT. The TGT is a data structure that holds the
principal’s identity, the time the TGT was gener-
ated, the machine to which it was delivered, and
some Kerberos-specific flags. It is encrypted us-
ing the KDC’s secret key, so that an attacker—
including the principal that acquired the TGT-
cannot meaningfully tamper with it. Because of
this property a TGT, or a Kerberos ticket in gen-
eral, is said to be opaque (i.e. it is not possible to
“see” into the data structure).

For human principals (i.e. users), the TGT
is acquired using an initialization program that
prompts for a password. Note that the password
is not passed over the network; instead, before
the user enters it, the KDC is asked for a TGT
encrypted with the user’s password. This opaque
ticket is passed back to the initialization program.
The user is then prompted for a password, which
is used to decrypt the newly received TGT?. Suc-
cessful decryption, i.e. the production of a cor-
rectly formatted Kerberos TGT, implies that the
user knows the correct password and thus vali-
dates his or her identity. Once the TGT has been
acquired, it is stashed in a credentials cache on
the principal’s local machine.

When the principal wants to use a network ser-
vice that participates in the Kerberos authenti-
cation infrastructure, it has to acquire a service
ticket. This is another data structure similar to
the TGT structure, this time encrypted using the
secret key of the target network service. To ac-
quire the service ticket, the user sends a message
to the KDC. The message includes the TGT, the
service name for which a ticket is required, and
some other information. (The entire ticket request
is encrypted with a one-time session key estab-
lished during TGT acquisition. In fact, almost all
communications between the client principal and
Kerberos-equipped servers are encrypted using a
session key negotiated the first time the client and
server interact.) When the KDC receives the re-
quest package tries to decrypt the TGT and verify

3In the case of a machine or server principal, the password
is stored in a key table file, called a keytab. This is a potential
security risk, since failure to properly control of access to the
keytab can compromise the key.

the user’s identity. If this succeeds, the TGT gen-
erates a new package of authentication data and
encrypts it using the secret key of the network ser-
vice. This ticket is opaque to the user, but can be
decrypted by the network service. It is returned
to the requesting principal to be used when con-
venient (although tickets generally have a fixed
lifetime, after which they become invalid).

Note that the KDC is a central player in the au-
thentication system, involved in almost all trans-
actions. In addition it is implicitly and absolutely
trusted. Thus good administration of the KDC is
essential for the smooth and secure operation of
a Kerberos realm (the set of machines over which
a particular instance of Kerberos operates, often
roughly analogous to an Internet domain in size).

In order to take advantage of Kerberos’s au-
thentication system, programs have to use a Ker-
beros API (application programmers’ interface).
This means that “legacy” applications—those that
were not written specifically to use Kerberos—have
to be modified before they can take advantage of
the authentication infrastructure. The Kerberos
distribution includes versions of the most com-
mon user-invoked network programs, including
rsh, rep, ftp, and telnet, for example. There is also
a version of su and a number of Kerberos-specific
administrative utilities.

In addition to authentication services, Kerberos
optionally supports the encryption of network
data streams. The rewritten applications included
with the distribution also optionally use this ser-
vice, so that user login sessions or data transmis-
sions can be encrypted.

Kerberos is a mature, freely available software
package that provides proven strong authentica-
tion. Users, machines, and programs can all
be authenticated with confidence, reducing the
risks of spoofing attacks. Kerberos never passes
a clear text password over the network, and it
passes an encrypted password only when abso-
lutely necessary—when setting or changing one.
The system is designed to avoid requiring the user
to type his or her password more than once a
day (or so—the actual time period is configurable).
Once the password is used to acquire a TGT, all
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other Kerberos activities happen automatically,
without user intervention—except, of course, that
the user is required to run the Kerberos-capable
versions of network utilities.

The Kerberos documentation is reasonably well
written and complete, and on-line FAQs and other
helpful information is easily available. The soft-
ware is distributed as source code and compiles
on a wide variety of UNIX platforms. Macintosh is
also supported, as well as a 16-bit Microsoft Win-
dows port. A Windows NT port is in progress. The
administrative tools and Kerberos-enabled utili-
ties that are included with the base system are
generally functional and have few bugs.

In short, Kerberos is a stable, highly functional
system that works on most platforms. It is well
understood and provides a good authentication in-
frastructure, with the added bonus of supporting
encrypted data transmission.

Unfortunately, the implementation of Kerberos
does have some weaknesses[7]. In particular, a
person with root privileges on a Kerberos host
can cause a number of problems. First and fore-
most, credentials cache files, which store the TGT
and all the tickets it has helped acquire, can be
read and stolen by a root-privileged process. This
means that root can potentially masquerade as
any other principal, once that principal has ini-
tially authenticated. Of course, the limited life-
times of Kerberos tickets limit the damage that
can be caused (and credential caches can be de-
stroyed at will or automatically at logout, which
helps). Root privileges also give access to all se-
cret keys stored on the host, which includes the
host key itself.

These problems are potentially serious, but one
should consider that a rogue root user can make
many other potentially more damaging attacks.
For example, a root user can snoop the kernel
clist data structures to steal passwords as they are
typed, which is potentially far more serious than
the temporary masquerade provided by credential
stealing.

There are some practical issues, as well. Ker-
beros is not a “light-weight” solution. It requires
that each host in the realm be equipped with a va-

riety of Kerberos daemons and client applications,
as well as at least two configuration files. A sub-
stantial overhead in administration is required,
and of course there are the reliability and secu-
rity issues associated with having a single point
of failure—the KDC. There are provisions for con-
figuring slave KDCs, which can operate when the
primary is off line, but these require administra-
tive overhead and are additional vulnerabilities
comparable in risk to the master KDC. There are
also the problems of providing physical security
for the KDC and its slaves.

There is the issue of supporting “legacy”
applications—that is, the requirement that pro-
grams be rewritten to be able to take advantage
of Kerberos’ authentication system. There are
also some common scenarios in which Kerberos is
unable to protect against clear text password in-
terception. For example, a common idiom is to
start an xterm on a remote host using rsh, dis-
playing the results locally. Although Kerberos can
make the initial connection, it is no longer in-
volved in the communication path between the lo-
cal X server and the remote client—all traffic, in-
cluding any passwords that are typed, are now ex-
changed as clear text.

Kerberos requires substantial education and re-
training of the user community. The concepts em-
ployed are not particularly difficult, but the first
time they are encountered they can be daunt-
ing. There are new commands for users to learn,
and the Kerberos implementations of the stan-
dard network clients behave somewhat differently
from the usual versions, in some cases taking dif-
ferent options—or worse, using the same options
to enable or disable different features.

Kerberos is not tremendously difficult to ac-
quire, build, and install, but the task is substan-
tial enough to prevent casual users from under-
taking it. In addition, for it to be properly in-
stalled one must have root privileges. This means
that users who are connecting from outside sites
will be able to use Kerberos only if their admin-
istrative staff have installed it already, or if they
themselves are sufficiently skilled and motivated
to install it.
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6.2/ SECURE SHELL

Secure shell, or ssh as it is more commonly known,
is a package of software that uses asymmetric
cryptography to provide encryption services and
greatly improved authentication[8, 9, 10, 11]. It is
a smaller package than Kerberos, both conceptu-
ally and in terms of required computational and
administrative resources. Furthermore it takes
a fundamentally different view than Kerberos, in
that it is designed to be deployed and used by in-
dividual users, rather than by a central organiza-
tion that has control over all the machines oper-
ating on a LAN. This approach has its advantages
and some disadvantages.

Used in its most simple mode, ssh is a drop-in
replacement for rsh, rlogin, and rcp that provides
strong encryption of the data stream. A variety of
encryption algorithms are implemented and can
be chosen via command line options or a per-user
or per-site configuration file. Ssh can either re-
place or coexist with the original network applica-
tions.

Basic encryption services are useful on their
own, but ssh provides additional features. The
first is an improved authentication procedure. By
choosing options appropriately, users can select
one of several levels of stronger authentication
protocols. The most simple and least secure is to
use BSD ruser ok() just as rlogin does. In this
mode the only advantage provided is data stream
encryption. In cases where r user ok() requires
a password—e.g. if there is no entry for the in-
coming host in the hosts.equiv or per-user .rhosts
file—ssh encrypts the password before transmit-
ting it to the server.

The next level of security is to add RSA-based
host authentication. In this mode, each host is as-
signed an RSA (asymmetric encryption) key pair.
The public key is freely advertised; the private key
is kept in a file local to the host and readable only
by root. (The private key is generated automati-
cally when ssh is installed.) When connecting to
a host for the first time, ssh asks the user if he
or she would like to download and save the target
host’s public key. The target host then transmits

an authenticator encrypted in the private “half” of
the key; if the client side can decrypt the authen-
ticator, access is permitted. Now that the public
key associated with the host has been saved (ei-
ther in a user-specific directory or in a host-wide
table), future connections will be permitted only if
the advertised public key matches the saved one
and the authenticator can be decrypted. If the
advertised public key is different from the saved
one, the user is warned that a man-in-the-middle
or spoofing attack may be taking place. Option-
ally, having determined that no such attack is oc-
curring, the user can replace the old public key
with the new one. Correctly used RSA-based host
authentication effectively detects and prevents IP,
DNS, and routing spoofing attacks—assuming of
course that the user running ssh pays attention to
the alarm messages and understands what they
mean.

The highest level of security provided by ssh
supplements host authentication by assigning
users an RSA key pair. The private key is stored
on the user’s local machine, encrypted using a
pass-phrase. The user’s public key is stored on the
server side. When a connection is attempted, the
server challenges the client with a random num-
ber encrypted using the public key. If the client
has the private key, it can decrypt the challenge
and tell the server what the random number was.
This proves that the client owns the key pair, and
access is permitted if the public half of that pair is
listed in a per-user file of authorized keys.

One complication here is that in order to access
the private key, which is stored encrypted on the
local disk, a pass-phrase is required. Hence every
time a connection is made, the user is required
to type a passphrase. Fortunately the ssh pack-
age includes another program called an authenti-
cation agent. This is a background process that
starts when the user logs in on his or her local
machine. It prompts for the pass-phrase and uses
it to decrypt and load the private key. Ssh is de-
signed to check for the existence of an authentica-
tion agent when a login connection is being made.
If there is one active, it can employ the private key
on behalf of the user it represents, without having
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to prompt him or her.

An ssh server can be configured to accept con-
nections at any of the security levels described
above. For example, if the encryption services are
all that is required, sshd can be configured to ac-
cept any connection that rshd would accept.

In addition to encryption and superior authen-
tication services, ssh provides a tunneling facility
that enables it to forward arbitrary TCP/IP con-
nections through an ssh connection, so that they
are encrypted without any change to the legacy
application being required. Ssh includes some
special facilities to make this particularly easy
with X711 connections. A proxy X server is es-
tablished on the remote side; all X clients started
by the user on that side are directed to use the
proxy as the server. The proxy uses the tunnel-
ing mechanism to forward X11 protocol messages
back through an encrypted channel to the user’s
local X server.

Ssh can be dropped in as a nearly transparent
replacement for existing applications*. As such,
it provides no extra authentication support but
does provide full encryption services. This alone
is a valuable feature. As users become more com-
fortable with the new tool, they can gradually in-
crease the level of security they employ.

Furthermore, the client version of ssh can be
easily installed by a reasonably knowledgeable
user, without root privileges and without requir-
ing control of the client machine. This means that
users at remote sites can be plausibly expected to
install the software.

In general, ssh can be installed and used with-
out an organization-wide commitment such as is
needed for Kerberos. Furthermore, no central ad-
ministration is required, other than the initial in-
stallation.

6.3/ S/KEY AND OPIE
S/Key[15] and OPIE[16] are software implemen-

4One area where ssh falls short of true transparency is as a
replacement for rep. Scp has similar functionality, but unlike
ssh it requires sshd on the remote end: there is no automatic
fallback to the rep protocol.

tations of one-time password schemes. Both are
based on one-way hash functions, described ear-
lier. S/Key uses MD4, which has been broken,
hence OPIE is preferred.

By their nature, one time passwords are use-
less if intercepted. This makes them ideal for use
from untrusted systems and across untrusted net-
works. In addition, because a list of OTP’s can be
prepared ahead of time and carried with a travel-
ing user, they can be used to provide secure access
from any machine.

One disadvantage is that both S/Key and OPIE
either require a local client program that gener-
ates the OTP based on the user’s password and
the server challenge, or a pre-generated list of
OTPs that the user carries with him or her. In
the latter case, there is a risk that the user will
lose the password sheet. Still, these tools allow se-
cure access from untrusted remote hosts over un-
trusted networks. If users would be making the
connections in any case, using insecure tools like
rlogin or telnet, the risk of a lost OTP sheet is rel-
atively small.

6.4/ SECURID TOKENS

A company called Security Dynamics Technolo-
gies manufactures SecurID authentication to-
kens. These are essentially credit-card sized
hardware implementations of one time password
schemes. Several alternatives are offered[31, 32].

The most simple is a card (“token”) that sim-
ple generates a unique access code every sixty
seconds. The sequence of codes is unpredictable.
To login, a user types a personal identification
(PIN) code and the current access code displayed
by the token. The remote server maps the PIN
to the cryptographic parameters associated with
that particular token, and by doing so can verify
that the provided access code is being generated
by the correct token.

In some cases there may be concern that the
PIN can be intercepted. This could lead to a se-
curity breach, either because the intercepted PIN
and access code could be reused within the sixty
second lifetime of the code—unlikely—or because
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the access token itself could be physically stolen
and used with the PIN. For customers concerned
about this type of problem, Security Dynamics
sells a token that incorporates a keypad, so that
the user can enter the PIN and generate an ac-
cess code that combines it with the standard time-
sensitive access code. The combined code is then
used to respond to the remote challenge, and if ev-
erything matches up access is permitted.

The great strength of the SecurID scheme is
that it introduces a second authentication factor.
This dramatically improves security, making in-
terception of passwords only a partial compro-
mise. If nothing else, this buys time for security
administrators and gives them the opportunity to
change passwords, revoke authentication tokens,
or take whatever other emergency measures are
appropriate.

SecurID also permits login over untrusted net-
works and from untrusted hosts, in the same way
that software OTP schemes do. And the physical
token approach has the advantage of not requiring
a local program for generating the OTP from the
PIN, or a dangerous list of pre-generated OTP’s.

The main problem with two factor authentica-
tion schemes is the same as its strength—the re-
quirement for possession of a physical authenti-
cation token. This introduces the possibility of
losing or forgetting the token, and of course the
added complexity of purchasing and distributing
the tokens.

SecurID also requires a server product on the
remote side, which ties into a database that maps
PINs to card serial numbers for determination
of the correct parameters to the encryption rou-
tines. This entails a financial commitment to Se-
curity Dynamics, as well as introducing training
and maintenance issues.

6.5/ PGP

PGP stands for “Pretty Good Privacy”. PGP is
an asymmetric cryptography-based email authen-
tication scheme that also provides digital signa-
ture and encryption services[33, 34]. PGP allows
users to generate asymmetric key pairs for them-

selves and then to manage and use these key
pairs. Public keys are managed using virtual key
rings, which record the entity associated with the
key, the key itself, and the identity of other users
who have signed the key to verify that they believe
that it really belongs to the person who claims it.
PGP allows association of trust ratings with sig-
nators, so that a trust value can be calculated for
each entry on the key ring.

Although PGP uses a public key system for au-
thentication, bulk data are encrypted using a sym-
metric cipher. The key for the symmetric cipher is
chosen randomly at the time the message is en-
crypted. It is passed to the intended recipients as
part of the message but encrypted using their pub-
lic keys. The recipients’ software extracts the en-
crypted key, decrypts it using the appropriate pri-
vate key, and then decrypts the message contents
using the resulting symmetric key. Thus a single
encrypted message can be decrypted by multiple
recipients, without requiring a shared secret key
and without requiring that the message be repli-
cated several times. An added benefit is that the
symmetric cipher is usually much more computa-
tionally efficient, hence the cost of encrypting and
decrypting is kept low.

Digital signatures are generated by calculating
a checksum for the message and then encrypting
it using the author’s private key. Recipients know
that the message originated from the author, and
has not been tampered with, if they can decrypt
the signature using the author’s public key and
the decrypted checksum still matches the mes-
sage.

Encryption and signature can be combined, so
that the intended recipients are the only people
who can read the message, and in addition they
can verify that it originated from the claimed au-
thor and has not been altered.

There are several mail tools that understand
and automate the process of encrypting, decrypt-
ing, signing, and verifying messages using the
PGP software. (For example, PGPmail, or various
Emacs packages.) This makes use of the system
considerable simpler for most users.

PGP makes email secure: a recipient can be con-
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fident that a message comes from the purported
author and has not been altered in any way. If
encryption is used, the recipient also knows that
nobody else has seen the message in transit. This
means, for example, that PGP can be used to
email out a set of one time passwords for some-
body at a remote site. The digital signature fea-
tures provide assurances that allow email to be
used as a first class component of a bureaucracy.
For example, if a user requires a root password
for a certain machine, she can send a signed mes-
sage to the machine’s administrator asking for the
password. The administrator knows that message
comes from the user and can then send a signed
message authorizing distribution of the password
to the security managers. They can then verify the
administrator’s identity, and the user’s, encrypt
the root password using the user’s public key, and
email it to her.

PGP is fairly complicated. A significant amount
of background reading and studying of the docu-
mentation is necessary before the system can be
used securely. Like all security software, PGP can
be misused, which introduces the nasty possibil-
ity of people emailing sensitive information under
the delusion that it is safe from prying eyes, only
to find that it is in fact exposed.

PGP is probably overkill for routine messages
(although an argument for routine digital signing
of messages can certainly be made).

6.6/ SECURE SOCKET LAYER

The Secure Socket Layer (SSL) is an Internet pro-
tocol that provides authentication and encryption
services[35, 36]. Authentication is implemented
using asymmetric cryptography, and encryption
using a symmetric session key negotiated at con-
nection initiation. SSL performs authentication
and encryption prior to any user data transmis-
sion.

SSL is comparable to Kerberos in some ways, in
that applications must be modified to work within
its authentication infrastructure. Unlike Ker-
beros, however, the emphasis with SSL has been
on codifying an infrastructure that can be used

to develop custom secure applications, for exam-
ple for use on the Web. SSL does not include any
description of key management techniques, spe-
cific applications, or tools for managing a system
built using the basic protocol. This approach con-
trasts with that of Kerberos, which concentrates
on a particular implementation of an authentica-
tion system, the tools for managing it, and stan-
dard general purpose applications that use it.

As a programmer’s tool, SSL is an interesting
technology that may become increasingly useful
as authentication systems and applications are
built around it. However, SSL has no immediate
utility as a component in a general purpose com-
puting environment, primarily because there are
not enough appropriate applications and tools im-
plemented.

6.7/ DCE

The Distributed Computing Environment (DCE)
is a comprehensive infrastructure for distributed
computing produced by the Open Groupl[37]. The
security component of DCE is an older version
of Kerberos, slightly modified to work within the
DCE environment[38].

DCE carries all of the advantages and disadvan-
tages of Kerberos. Additionally it has the advan-
tage of providing services other than security that
can be used for distributed computing.

Unfortunately DCE also introduces problems
that are not shared by Kerberos. Perhaps first
among these is a requirement for a site-wide com-
mitment to deploying DCE, which requires pur-
chasing the DCE software for all architectures. In
some cases DCE may not even be available. Fur-
thermore, the DCE source code is expensive and
the system is so large that porting it is imprac-
tical. The complexity of DCE and the difficulty
of integrating new versions of its component soft-
ware leads to it lagging behind the state of the art.
For instance the version of Kerberos incorporated
into the DCE Security Service is an older one that
lacks several important facilities. For the types
of problems addressed in this report, DCE offers
similar features to Kerberos but carries more dis-
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advantages. For this reason it is not considered
further.

6.8/ FIREWALLS AND PACKET FILTERS

A firewall is an Internet router that mediates
all communication between internal networks and
the Internet as a whole. The firewall host (or a
few hosts, although for convenience it is assumed
there is only one) is the only direct point of contact
from the internal network to the outside world.
All traffic to and from the Internet flows through
the firewall.

A firewall can greatly decrease the vulnerability
of internal hosts to external attack. Since there
is a single entry point to the internal network, a
security administrator can spend a great deal of
effort to keep it secure. This is a typical solution if
resources are too scarce to secure each individual
machine on the internal network. Firewalls can
also result from an overly centralized approach
to security, in which the general user community
is not trusted or the security administrator re-
fuses to relinquish any responsibility (and hence
authority) for security.

The dangers of this approach are three-fold.
The least important relates to performance and
reliability. A firewall is a natural bottleneck and
single point of failure. This is mitigated if there
are multiple firewall hosts, but they are still obvi-
ous candidates for an organized denial-of-service
attack. Secondly and more seriously, the firewall
is an obvious focus for attackers, a virtual bulls-
eye, which leads to the third and most serious
problem. Once an attacker has penetrated the
firewall, either by cracking it or because he or she
already has legitimate access to the internal net-
work, the internal hosts are open to attack.

This scenario is particularly dangerous if the in-
ternal hosts have been poorly administered (from
a security point of view). In many cases this is
part of the motivation for establishing the firewall
in the first place. If the internal machines are ad-
equately protected and monitored, a firewall is re-
dundant.

Although firewalls in the traditional sense may

cause as much harm as good, a slight modifica-
tion of the scheme can be very helpful. If access
gateways are equipped with flexible packet filters,
they can help to reduce the risk of certain spoofing
and denial of service attacks. For example, gate-
ways can be configured to block external packets
with originating addresses that belong to inter-
nal hosts: in other words, packets generated by
an outside attacker in an attempt at spoofing an
internal host. Also the ability to “block” a particu-
lar Internet host or domain can be useful in emer-
gency or nuisance situations.

Clearly a packet-filter type of approach can be
useful. The key is to continue to attend to the
internal hosts, so that if the virtual perimeter is
compromised they are individually protected.

In short, the firewall (packet filter) approach is
useful if it supplements the other recommenda-
tions and tools given here; not as a replacement.
The other useful scenario occurs when the inter-
nal machines are incapable of protecting them-
selves. Some commercial operating systems are
sufficiently poorly designed that they simply can-
not be made secure while remaining fully func-
tional. In this case a strong firewall may be the
only recourse.

6.9/ IPSEC: SECURE IP

IPsec—secure IP—implements SSH- and SSL-
like authentication[13] and encryption[14] at the
IP packet layer, i.e. low in the network stack. Ul-
timately, it is likely to replace the similar higher
level schemes. However IPsec is currently not
widely implemented, and again, as with SSL,
there is a lack of ancillary software for managing
systems built with it.

For the moment, IPsec is not useful for the ma-
jority of computing sites. When operating sys-
tems start to provide IPsec-capable drivers and
IPsec administrative tools, it is likely to replace
application-level approaches.
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7/ RECOMMENDATIONS

Recommendation 1
Involve users.

This is critical no matter which of the subsequent
recommendations are adopted. Users can short-
circuit almost any security procedure, rendering
it useless or worse than useless, unless security
administrators are able to win their respect and
cooperation. A security system is only as strong as
its weakest link, and unless users are cooperating
they will usually be that weak link.

There is, of course, no magical formula for build-
ing a cooperative relationship between security
administrator and user community. Techniques
that would work well under one administrator
in a certain environment might very well fail
elsewhere, depending on the requirements of the
users and the personality and skills of the ad-
ministrator. Nonetheless, there are a few general
points that apply in most situations.

e Educate users. They will be much more likely
to adopt and appreciate secure techniques if
they genuinely believe that a threat exists.
Web sites and short seminars are excellent
ways to do this.

e On the other hand, do not exaggerate the
threat. Security incidents really happen.
Howard calculates a frequency on the order
of one incident per Internet domain per year,
and for big sites this number is probably
higher. But few incidents cause any signif-
icant damage or problems. Misrepresenting
the threat as dire and immediate will quickly
become tiresome, and the administrator will
lose credibility.

¢ Make security tools easy to use. One way to
do this is to provide pre-built tool packages
for the site’s computing platforms. Along with
documentation, these can be distributed from
an internal web site. Another option is to
provide floppy disks with one-time password

clients or ssh clients, so that users visiting re-
mote sites or logging in from home can easily
use these tools.

¢ Remember that the security administrator is
part of the system administration team, and
that the system administration team exists to
help the community effectively use the com-
puter systems. Take this to heart, and try to
convey this attitude to the user community.
Ideally they will see the administrator as a
person helping them deal with the unfortu-
nate realities of a potentially hostile Internet
environment, rather than an autocrat inter-
fering with their work by introducing point-
less obstacles.

e Avoid heavy-handed and authoritarian ap-
proaches wherever possible. Although there
may occasionally be an extreme circumstance
where an authoritarian approach is appro-
priate, this should be the exception rather
than the rule. Authoritarianism breeds re-
sentment and in some cases active opposition.

To summarize: the administrator should strive
to educate users about the problems that exist,
make it as easy as possible for them to use the
tools that address the problems, and underneath
it all try to position him- or herself as the users’
ally.

Recommendation 2
Encrypt interactive login sessions.

Encrypted login sessions eliminate password-
stealing sniffer attacks, which are a significant
threat. There are negligible performance costs,
far outweighed by the benefits. Either Kerberos
or SSH can meet this requirement.

Recommendation 3
Introduce a strong authentication infrastructure.

As discussed earlier, the basic UNIX authenti-
cation system introduces host spoofing vulnera-
bilities which can lead to unauthorized access or
password stealing. Host spoofing can be made
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much more difficult with the introduction of a
cryptographically strong host authentication sys-
tem. An improved user authentication system can
support convenient no-password hops between
machines without a dangerous system, like BSD’s
rhost approach. Since rhost vulnerabilities re-
sult in a significant number of compromises, .rhost
and hosts.equiv files should be forbidden or strictly
controlled. Either Kerberos or SSH can meet all of
these requirements.

Recommendation 4
Provide one-time password access for connections
from external sources.

If a user types a password over an unencrypted
connection even once, that password is compro-
mised. It is important to provide an access mecha-
nism that can be used when the normal encrypted
login tool is not available, and OTPs satisfy that
requirement. S/Key meets this requirement but
uses the broken MD4 one-time hashing algorithm;
OPIE uses MD5 and is preferable.

Recommendation 5
Use two-factor authentication for initial login.

Of the recommendations, this is the most difficult
to implement. However it greatly improves secu-
rity by reducing the absolute dependence on pass-
word secrecy. Two-factor authentication should be
required for access to the local network, whether
from an external source or at a local user’s point
of entry. A less secure alternative is to require
two-factor authentication for root login, but not
for other users.

Recommendation 6
Do not permit group accounts.

Group accounts are dangerous and they are rarely
necessary. They are a natural target for attackers
and are much more difficult to effectively monitor,
so that a break-in is likely to remain undetected
for longer. If at all possible, group accounts should
be avoided.

One alternative is to create individual accounts
for each who would have used the group account.

This may not be an improvement if the accounts
are infrequently used, since they then become a
target. In this case, the ideal is to dynamically cre-
ate and delete accounts as needed. Another possi-
bility is to use Kerberos, which can be configured
to grant realm-wide accounts.

The one account that will almost certainly have
to be shared is root. In many environments there
is no practical way to avoid this. A shared root
account is less risky if direct logins are not per-
mitted. Direct logins are vulnerable to spoof-
ing attacks and suffer from a lack of accountabil-
ity, which makes post-incident investigation much
more difficult. Users should first login as “them-
selves” and then become root.

Recommendation 7
Test system security by simulating attacks.

Monitor CERT/CC reports to keep track of the
state-of-the-art in cracking attacks, and identify
vulnerabilities in your system’s security by using
the same methods as attackers would. Run crack-
ing programs to identify vulnerable passwords.
Toolkits like ISS and SATAN are useful for find-
ing application-level vulnerabilities.

The best simulated attacks are those conducted
by an outside agency. The external group has no
agenda to protect local staff or users; in fact they
may well be strongly motivated to find vulnerabil-
ities, to demonstrate their effectiveness.

Recommendation 8
Provide digital signature-capable email tools.

Digital signatures are not often required, but the
facility should always be available so that in cases
where it is important it can be used. Most systems
that provide digital signatures also offer message
encryption, which is less commonly needed but
can also be useful.

Recommendation 9
Provide multiple independent public key servers.

In cases where asymmetric authentication sys-
tems are employed (SSH-based authentication or
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digital signature systems), provide multiple inde-
pendently managed key servers. No one person
should have access to more than one key server.
This makes it very difficult to introduce a false
key.

8/ CONCLUSION

The Internet is built on an insecure protocol. De-
spite this, system administrators face the chal-
lenge of providing their users with computing en-
vironments that ensure the integrity and privacy
of their data. Fortunately it is possible to build se-
cure protocols within the insecure ones that are
commonly available. Although this approach is
not proof against all types of attacks, it offers an
effective way to increase security to a satisfactory
level. In many cases, presenting an attacker with
a challenge is enough to encourage him or her to
look to another target.

Most of the tools described, including SSH, Ker-
beros, and PGP, are available at no cost on the In-
ternet. This paper has presented the motivation
for using these tools, the base technology they em-
ploy, and the ways in which they can be incorpo-
rated into a typical computing environment. The
author hopes that this introduction is sufficient to
pique the interest and concern of system adminis-
trators and their managers and to encourage them
to incorporate some of these tools into their own
computing sites.
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